National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Active Damping of Machine Tool Head
Škúci, Michal ; Marek, Jiří (referee) ; Březina, Tomáš (advisor)
The master’s thesis deals with building mechatronics model of machine tool head delivered by company TOSHULIN,a.s. for purpose of damping vibration. Mechanical part of the model is based on modeling of system of flexible bodies. Components are modeled in FEM program ANSYS and subsequently reduced using Craig-Bampton method. The system of flexible bo-dies is created in MBS program ADAMS. Model is linearized and subsequently reduced. As a element of active damping is used linearized model of magnetic bearing. For control is desig-ned PID controller. The comparison of damped and undamped model is conducted in the end.
Hybrid magnetic bearing design
Šindelář, Petr ; Bárta, Jan (referee) ; Rúra, Dávid (advisor)
The thesis deals with the design of a hybrid magnetic bearing. This is an extension of the issue of common bearings in high-speed motors. The work is divided into three parts. A general theory of magnetic bearings is described in the first part. The second part deals with the mathematical description of the bearing. A proposal of specific hybrid magnetic bearing is described in the third part. The bearing for the motor was already designed. It is a 45000rpm motor with a power output of 12 kW. This thesis aims to create a design of hybrid magnetic bearing with magnets to create a permanent magnetic field and coils to regulate forces to stabilize the rotor and limit vibrations. The practical design includes mathematical calculation in Matlab and computer simulation based on the finite element method in ANSYS Maxwell.
Electrodynamic magnetic bearing design
Pavluš, Ondřej ; Janda, Marcel (referee) ; Rúra, Dávid (advisor)
High speed applications demands with a need for lower energy consumption lead to designing new types of bearings. In the last decades magnetic bearing, which would be able to obtain passive stable levitation using regular materials at room temperature, has been searched. This has lead to development of electrodynamic bearing based on eddy currents principle. Currently the electrodynamic bearings are still not fully explored and further research is needed. The aim of the work is to describe the theory about modern magnetic bearing, analysis and design of electrodynamic bearing according to given parameters. The finite element method is used for further analysis and evaluate behaviour of its properties.
Simulation of the Laval rotor supported by nonlinear bearings
Krček, Aleš ; Hrstka, Miroslav (referee) ; Lošák, Petr (advisor)
The presented diploma thesis deals with simulation of Laval rotor supported by nonlinear bearings. The first part of thesis deals with research, which is focused on description of Laval rotor and motion equations for case of rigid and flexible rotor, also on description and modeling of hydrodynamic and magnetic bearing, which is considered in thesis. The second part of thesis deals with simulation of rotor for different approaches to modeling hydrodynamic and magnetic bearings. Using simulations performer in time domain, the dynamic behavior of Laval rotor is evaluated and compared. Simulations are performer in MATLAB.
Simulation of the Laval rotor supported by nonlinear bearings
Krček, Aleš ; Hrstka, Miroslav (referee) ; Lošák, Petr (advisor)
The presented diploma thesis deals with simulation of Laval rotor supported by nonlinear bearings. The first part of thesis deals with research, which is focused on description of Laval rotor and motion equations for case of rigid and flexible rotor, also on description and modeling of hydrodynamic and magnetic bearing, which is considered in thesis. The second part of thesis deals with simulation of rotor for different approaches to modeling hydrodynamic and magnetic bearings. Using simulations performer in time domain, the dynamic behavior of Laval rotor is evaluated and compared. Simulations are performer in MATLAB.
Hybrid magnetic bearing design
Šindelář, Petr ; Bárta, Jan (referee) ; Rúra, Dávid (advisor)
The thesis deals with the design of a hybrid magnetic bearing. This is an extension of the issue of common bearings in high-speed motors. The work is divided into three parts. A general theory of magnetic bearings is described in the first part. The second part deals with the mathematical description of the bearing. A proposal of specific hybrid magnetic bearing is described in the third part. The bearing for the motor was already designed. It is a 45000rpm motor with a power output of 12 kW. This thesis aims to create a design of hybrid magnetic bearing with magnets to create a permanent magnetic field and coils to regulate forces to stabilize the rotor and limit vibrations. The practical design includes mathematical calculation in Matlab and computer simulation based on the finite element method in ANSYS Maxwell.
Electrodynamic magnetic bearing design
Pavluš, Ondřej ; Janda, Marcel (referee) ; Rúra, Dávid (advisor)
High speed applications demands with a need for lower energy consumption lead to designing new types of bearings. In the last decades magnetic bearing, which would be able to obtain passive stable levitation using regular materials at room temperature, has been searched. This has lead to development of electrodynamic bearing based on eddy currents principle. Currently the electrodynamic bearings are still not fully explored and further research is needed. The aim of the work is to describe the theory about modern magnetic bearing, analysis and design of electrodynamic bearing according to given parameters. The finite element method is used for further analysis and evaluate behaviour of its properties.
Active Damping of Machine Tool Head
Škúci, Michal ; Marek, Jiří (referee) ; Březina, Tomáš (advisor)
The master’s thesis deals with building mechatronics model of machine tool head delivered by company TOSHULIN,a.s. for purpose of damping vibration. Mechanical part of the model is based on modeling of system of flexible bodies. Components are modeled in FEM program ANSYS and subsequently reduced using Craig-Bampton method. The system of flexible bo-dies is created in MBS program ADAMS. Model is linearized and subsequently reduced. As a element of active damping is used linearized model of magnetic bearing. For control is desig-ned PID controller. The comparison of damped and undamped model is conducted in the end.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.